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Abstract

The principle of formulating the JMC method to produce secondary sources that function as active
scatterers on a hypothetical scattering surface is established, to be applied, e.g., in concert halls. The
examination is based on the modified JMC method, to ensure that the logic does not lead to the need of
changing the primary sources. The actively reflecting plane serves as an example of the JMC formulation
for the active scatterer. The solution is extended to a general planar JMC element with well-defined
reflection and transmission properties. The solution works on the local control principle: each reflecting
subarea needs information of the primary field only at that subarea. The solution can also apply
approximately to piecemeal planar surfaces and to smooth convex surfaces. Further, general active
boundary condition elements are defined. Based on the element definitions, simple reflecting source, the
pressure- and velocity-reflecting boundaries, and the impedance boundary are introduced. Boundary
condition elements do not work on the local control principle: in a general case secondary sources on each
subarea need information of the primary field at each subarea. True boundary condition elements are also
defined based on their net sound power radiation.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The JMC method is suitable for formulating the problem of active noise control with the
general system theory. More generally, the method applies to the reshaping of acoustic or any
other fields [1–7], to wave reconstruction (holochory, holophony) [1,7–10], and to wave
propagation problems [11–13]. Its name originates from the first three pioneers of the method:
Jessel, Mangiante and Can!evet [4] (the JMC group). In principle, whatever the primary sound
field is, it can be changed (reshaped) into any other field by using the JMC method. Thus, it forms
a general theoretical approach for the active control of sound.
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Jessel presented the idea of active absorption for acoustic fields based on the complementary
configuration of his formulation for the Huygens’ principle in 1968 [14]. In 1972, Jessel and
Mangiante formulated the operator presentation of the principle of the active absorption by
Huygens’ sources with the help of Jessel’s general perturbation lemma [15]. The aim was also the
capability of handling more complex field-reshaping problems. Jessel gave the operator
presentation in more detail in 1979 [16], with a general theorem for dividing a field into a
couple of complementary fields, by first dividing the space into two complementary fuzzy parts.
One special case of that theorem was the complementary couple of the Huygens’ principle and the
principle of active absorption.
In 1973, Jessel presented the generalized Huygens’ principle in which only some of the primary

sources were replaced with the secondary ones [1]. Furthermore, Jessel presented the very
generalized Huygens’ theorem in 1991 [17]. By using the very generalized Huygens’ theorem for
active absorption, it is possible to introduce separate secondary source zones for separate primary
source regions or point sources, or for separate zones to be silenced.
Jessel extended the wave decomposing method by applying it to holophony (reproduction or

reconstruction of an acoustic field, acoustical counterpart of holography) in 1973 [1]. Ill!enyi and
Jessel discussed its generalization holochory, which can be applied to any fields, in 1983 [8], and in
more detail in 1988–1989 [7,9]. In 1991, Mangiante stated that the JMC method offers a definite
approach to holochory [10]: with it an arbitrary physical field may be reconstructed exactly (the
Huygens’ principle, holophony) and a given field may be remodelled arbitrarily (active
absorption).
Can!evet proposed using Jessel’s decomposing method to solve acoustic propagation problems

in inhomogeneous transition layers and in waveguides with a changing cross-section in 1980 [11].
The space is divided into Urysohnian subspaces so that the propagation problem can be solved
more easily and separately in the subspaces.
In 1983, Jessel attached the JMC method to the general system theory [4]. Resconi and Jessel

introduced a general system logical theory in 1986 [5]. It was a combination of Resconi’s logical
theory of systems and Jessel’s theory of secondary sources. By the help of the theory, the JMC
method was assigned to a more general framework. In that framework many field-theoretical
problems, besides the Huygens’ principle and the principle of field-reshaping, can be approached.
The theory can also apply to other than field-theoretical problems, geometries and chemical
controls given by Resconi and Jessel as two application areas. The general system logical theory
can apply to complex problems, due to its ability to deal with the networks of elementary logical
systems.
Mangiante introduced the generalized JMC method in 1989–1990 [18,19]. In the generalized

JMC method, it is possible to define various boundary conditions at the boundaries of the
secondary source zone by using different kinds of source types in the secondary source zone. This
enables defining many existing source configurations used in active control of sound, so they may
fall into the category of special cases of the generalized JMC method. Uosukainen presented the
modified JMC method in 1989–1990 [20–22]. The modified JMC method differs from the original
one such that in the former the primary sources are not changed in any case.
The JMC method has not been applied to active scatterers previously. The purpose of this

paper is to establish the principle of formulating the JMC method to produce secondary sources
that function as active scatterers on a hypothetical scattering surface. As examples, an actively
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reflecting plane and active boundary condition elements are introduced. The examination is based
on the modified JMC method, to ensure that the logic does not lead to the need of changing the
primary sources. Because the main idea of this paper has not been published previously in
literature, this paper concentrates on the theoretical basis, and the testing and measuring of real
applications are left for future research.
Firstly, the modified JMC method is introduced. Secondly, the JMC formulation for the active

scatterer is presented in a general operator formulation and applied to acoustic fields especially.
The actively reflecting plane is given as an example by the help of the reflection transformation,
and the solution is extended to a general planar JMC element with well-defined reflection and
transmission properties. Thirdly, general active boundary condition elements are defined in a
general operator formulation and applied to acoustic fields especially. The Huygens’ principle is
utilized to connect the field variables at the hypothetical surface of the scatterer so that the
scattered field obeys the field equation automatically. With the acoustic fields, the Huygens’
principle is presented by the help of the scalar Green’s function for scalar fields and the dyadic
Green’s function for irrotational vector fields. Based on the element definitions, simple reflecting
source, pressure- and velocity-reflecting boundaries, and impedance boundary are introduced.
Except for the simple reflecting source, the derivations of the formulae of the secondary source
strengths utilize the matrix formulation of the Huygens’ principle. The derivation of the formulae
of the secondary source strengths of the impedance boundary utililizes a duality transformation to
change the boundary condition to a form that can be handled similarly as with an ideal reflector.
True boundary condition elements are also defined based on their net sound power radiation.

2. Modified JMC method [20–22]

In the original situation there is a deterministic field (of any type) in which linear operator L
(typically a differential operator) connects sources S and field F via

LF ¼ S: ð1Þ

Instead of field F; field F 0 is desired, which can be obtained from the original field using
operator M as

MF ¼ F 0: ð2Þ

In the original JMC method, operator M also weights the original sources to sources S0. In the
modified JMC method, the original sources always remain unchanged; that is, they are not
weighted in any case, i.e.,

S0 ¼ S: ð3Þ

Both in the original and modified JMC method, there is a need for additional sources S00 such
that field equation (1) for the modified field is valid. The field equation of desired field F 0 with the
original sources unchanged is

LF 0 ¼ S þ S00: ð4Þ
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The expression above, together with Eqs. (1) and (2), yield for the secondary sources in the
modified JMC method

S00 ¼ LF 0 � S ¼ LMF � LF ¼ M0F; ð5Þ

where

M0 ¼ LðM� IÞ; ð6Þ

where I is the identity operator.

3. JMC formulation of the active scatterer

In this section the JMC formulation for the active scatterer is presented in a general operator
formulation and applied to acoustic fields especially, and the actively reflecting plane serves as an
example. The JMC formulation has not been applied to active scatterers previously. The
examination is based on the modified JMC method, to ensure that the logic does not lead to the
need of changing the primary sources.

3.1. General formulation

A hypothetical scattering obstacle with its boundary surface A is defined according to Fig. 1.
The modified field is assumed to be the sum of an original field F and some extra field Fs

(scattered field)

F 0 ¼ F þ Fs; FsðrÞ ¼ MsFðMrrÞ; ð7Þ

where r is a spatial co-ordinate vector, andMs andMr are operators. It is supposed that operator
Mr maps vector r on the other side of surface A; i.e.,

Mrr inside A if r is outside A

Mrr outside A if r is inside A

Mrr ¼ r if r is at A

8><
>:

9>=
>;; ð8Þ
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see Fig. 1. It is further supposed that extra field Fs vanishes inside A and obeys the homogeneous
field equation outside A;

Fs ¼ 0; inside A; LFs ¼ 0; outside A: ð9Þ

The latter formula, together with Eqs. (1) and (4), implicates that the only possible place for the
secondary sources are on surface A:
The fact that the modified field generally obeys Eq. (2) yields

M ¼ IþM0
s; ð10Þ

where operator M0
s operates so that

M0
sFðrÞ ¼ MsFðMrrÞ: ð11Þ

The secondary sources, according to the modified JMC method, are now as stated in Eq. (5),
where, according to Eqs. (6) and (10),

M0 ¼ LðM� IÞ ¼ LM0
s; ð12Þ

so

S00ðrÞ ¼ LM0
sFðrÞ ¼ LMsFðMrrÞ: ð13Þ

According to Eqs. (7) and (9), operator Ms has to be of the form

Ms ¼ Ms0eðx1 � x10Þ; ð14Þ

where Ms0 is a continuous function of spatial co-ordinates, eðx1 � x10Þ is a step function, and
where it is supposed that boundary A is formed of a constant x1 surface x1 ¼ x10; see Fig. 1. The
secondary sources on A are due to the discontinuity of Ms at x1 ¼ x10: Eq. (9) can be written
outside A; utilizing Eqs. (7) and (9), as

LFsðrÞ ¼ LMsFðMrrÞ ¼ LMs0FðMrrÞ ¼ 0 outside A: ð15Þ

Due to the continuity ofMs0; this must hold also at A: Because Fs vanishes inside A; according to
Eq. (9), the equation above is valid everywhere, i.e.,

LMs0FðMrrÞ ¼ 0: ð16Þ

Now the secondary sources are, according to Eqs. (13), (14) and (16),

S00ðrÞ ¼LðMs0eðx1 � x10ÞFðMrrÞÞ

¼LðMs0FðMrrÞÞeðx1 � x10Þ þ Lðeðx1 � x10ÞÞMs0FðMrrÞ

¼Lðeðx1 � x10ÞÞMs0FðrÞ at A: ð17Þ

The final general solution above depends on the original field at A; operator Ms0; and the field
operator operating on the step function at A:

3.2. Application to acoustic fields

In acoustic fields the field and the sources can be represented by vectors F and S

correspondingly, and in flowless and homogenous ideal fluids the operator connecting them

ARTICLE IN PRESS

S. Uosukainen / Journal of Sound and Vibration 267 (2003) 979–1005 983



can be presented with matrix operator L as

L ¼
Q0

q
qt

=�

= r0
q
qt

2
664

3
775; F ¼

p

u

" #
; S ¼

q

f

" #
; ð18Þ

where t is time, Q0 and r0 are the compressibility and the density of the unperturbed fluid, p and u

are the sound pressure and the particle velocity of the acoustic field, and q and f are the monopole
and dipole distributions per unit volume.
Operator L operating on the step function yields now

Lðeðx1 � x10ÞÞ ¼
0 =eðx1 � x10Þ�

=eðx1 � x10Þ 0

" #
¼ dðx1 � x10Þ

0 en�

en 0

" #
; ð19Þ

where dðx1 � x10Þ is the Dirac delta function and en is a unit outward normal vector on surface A;
see Fig. 1.
The secondary sources can now be presented with vector S00; being according to Eqs. (17)–(19)

S00 ¼
q00

f 00

" #
¼ dðx1 � x10Þ

0 en�

en 0

" #
Ms0

p

u

" #
¼ dðx1 � x10Þ

Msuu � en

Msppen

" #

¼ dðx1 � x10Þ
Msuu

MsppI

" #
� en; ð20Þ

where operator Ms0 has been divided into two operators, Msp operating on the sound pressure,
and Msu operating on the particle velocity

Ms0

p

u

" #
¼

Mspp

Msuu

" #
; ð21Þ

and where I is an identic dyadic (I � a ¼ a � I ¼ a). Integrating expression (20) with respect to x1
yields surface secondary source distribution vector S00

s on A as

S00
s ¼

q00
s

f 00s

" #
¼

Msuu � en

Msppen

" #
¼

Msuu

MsppI

" #
� en atA: ð22Þ

The solution above for the acoustic fields depends on the original sound pressure and the normal
component of the original particle velocity at A; and operator Ms0:

3.3. Reflecting plane

The actively reflecting plane is treated here based on the examination above. The reflection
transformation is utilized. Furthermore, the solution is extended to a general planar JMC element
with well-defined reflection and transmission properties.
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3.3.1. Reflection dyadic

Dyadic K producing the reflection transformation of the original field with respect to the plane
x ¼ 0 can be presented as [23]

K ¼ I� 2exex ¼ �exex þ eyey þ ezez; ð23Þ

where ex is a unit vector in the x direction (normal to the reflecting plane), see Fig. 2. The dyadic
of the reflection transformation inverts the normal component (with respect to the reflecting
plane) of the vector as opposite without changing the other components in any way. The reflection
transformation operates on both the actual field vectors and co-ordinate vector r; see Fig. 2. The
transformed field may be interpreted to be caused by a mirror image of the original source with
respect to the surface. The strength of the mirror image and its distance from the reflecting surface
are equal to those of the original source.
If the reflecting surface is not ideal, the amplitude of the reflected field is smaller than that of the

original field on the reflecting surface. The reflection may also change the phase of the field. This
can be taken into account with complex reflection coefficient R: The reflection coefficient must be
properly chosen to ensure that the reflected field satisfies the homogeneous field equation in the
half-space x > 0: One possibility is to use a reflection coefficient independent of the angle of
incidence. In that case the reflection coefficient only weights the field of the image source(s)
similarly in the half-space x > 0: With a properly chosen reflection coefficient, the reflected
acoustic fields (subscript r) obey

prðrÞ ¼ RpðK � rÞ; urðrÞ ¼ RK � uðK � rÞ: ð24Þ

According to the presentation of the spatial variable in the reflection transformation, the
propagation direction with respect to the normal of the plate is changed into the opposite,
remaining original in lateral directions. Multiplying the original amplitudes by R produces the
amplitudes of the reflected sound pressure and the reflected lateral components of the particle
velocity at the reflecting surface. Contradictorily, multiplying the original amplitude by �R
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produces the amplitude of the reflected normal component of the particle velocity at the reflecting
surface.

3.3.2. Secondary sources and sound field
In the next the reflected acoustic field is generated by the help of the modified JMC method in

the half-space x > 0; see Fig. 2.
Operators Ms and Mr; defined in Eqs. (7), (8), (14) and (21) are now

Ms ¼ Ms0eðxÞ; Ms0 ¼
Msp

Msu

" #
¼ R

1

K�

" #
; Mr ¼ K � : ð25Þ

The secondary source vector, according to Eqs. (22), (23) and (25), is now

S00
s ¼

q00
s

f 00s

" #
¼

Msuu

MsppI

" #
� ex ¼ R

Ku

pI

" #
� ex ¼ R

�u � ex

pex

" #
at x ¼ 0: ð26Þ

The solution above works on the local control principle: the secondary source strengths at any
point on A depend on the original fields only at the same point.
The total field vector at x ¼ 0 is, according to Eqs. (7), (25) and (23),

F0 ¼FþMsF ¼
ðIþMspÞp

ðIþMsuÞu

" #
¼

ð1þ RÞp

ðIþ RKÞ � u

" #

¼
ð1þ RÞp

ðexex þ eyey þ ezez þ Rð�exex þ eyey þ ezezÞÞ � u

" #

¼
ð1þ RÞp

ð1þ RÞu � ðeyey þ ezezÞ þ ð1� RÞu � exex

" #
at x ¼ 0: ð27Þ

In the case of an active rigid surface, R ¼ þ1; and Eq. (27) yields

F0 ¼
ð1þ RÞp

ðIþ RKÞ � u

" #
¼ 2

p

u � ðeyey þ ezezÞ

" #
at x ¼ 0: ð28Þ

The sound pressure and the tangential components of the particle velocity double on the surface
at x ¼ 0; and the normal component of the particle velocity vanishes on the surface, as they
should.
In the case of an active pressure-release surface, R ¼ �1; in which case Eq. (27) yields

F0 ¼
ð1þ RÞp

ðIþ RKÞu�

" #
¼ 2

0

u � exex

" #
at x ¼ 0: ð29Þ

In that case the sound pressure and the tangential components of the particle velocity vanish on
the surface at x ¼ 0; and the normal component of the particle velocity doubles on the surface, as
they should.
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3.3.3. General planar JMC element

Comparing the secondary surface source densities in Eq. (26) with those of the plane absorptive
JMC elements (see [24], absorption in the region xo0)

S00
s ¼

q00
s

f 00s

" #
¼

u � ex

pex

" #
at x ¼ 0 ðabsorbing element; absorption in xo0Þ ð30Þ

shows that they are of the same form as in Eq. (26), only the sign of the monopole distribution is
the opposite and reflection coefficient R is multiplying the source strengths with the reflecting
element. The reflecting action in x > 0 and the absorbing action in xo0 can be realized
simultaneously by superimposing the source strengths to yield the absorbing-reflecting element

S00
s ¼

q00s

f 00s

" #
¼

ð1� RÞu � ex

ð1þ RÞpex

" #
at x ¼ 0 ðreflection in x > 0; absorption in xo0Þ: ð31Þ

Eq. (31) yields for the actively rigid (R ¼ þ1) absorbing–reflecting element

S00
s ¼

q00
s

f 00s

" #
¼

0

2pex

" #
at x ¼ 0; ð32Þ

in which case there is no need for monopoles.
Similarly, Eq. (31) yields for the actively pressure-release (R ¼ �1) absorbing–reflecting

element

S00
s ¼

q00
s

f 00s

" #
¼
2u � ex

0

" #
at x ¼ 0; ð33Þ

in which case there is no need for dipoles.
The transmitting Huygens’ source is similar to the absorbing source, only their signs are

opposite. So, the transmitting source, radiating sound in the region xo0; has source strengths
according to

S00
s ¼

q00s

f 00s

" #
¼ �

u � ex

pex

" #
at x ¼ 0 ðtransmitting element; transmission in xo0Þ: ð34Þ

Thus, the transmitting functioning with transmission coefficient T can also be superimposed on
the element, having source strengths according to Eq. (31), yielding a general transmitting–
reflecting JMC element with desired transmission and reflection properties

S00
s ¼

q00s

f 00s

" #
¼

ð1� R � TÞu � ex

ð1þ R � TÞpex

" #
at x ¼ 0 ðreflection in x > 0; transmission in xo0Þ: ð35Þ

The solution for the general planar JMC element above works on the local control principle: the
secondary source strengths at any point on A depend on the original fields at the same point only.
The planar secondary source expressions in the equation above approximately applies to

piecemeal planar surfaces and even to smooth convex surfaces. In those cases the unit vector in x

direction has to be replaced with a unit vector normal to the surface.
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4. Boundary condition elements

In some cases it may be difficult to define the scattered field using operators Ms and Mr as in
Eq. (7), and to be sure that the field satisfies the field equation as well. There is another way to
approach the problem in that case. In this section general active boundary condition elements are
defined in a general operator formulation and applied to acoustic fields especially. The Huygens’
principle is utilized, in order to make the scattered field to obey the field equation at the
hypothetical scattering surface automatically.

4.1. General definitions

Eq. (17) for the secondary sources can be written by the help of Eqs. (7), (8) and (14) so that
scattered field Fs appears explicitly in the expression

S00 ¼ Lðeðx1 � x10ÞÞMs0F ¼ Lðeðx1 � x10ÞÞFs at A: ð36Þ

Because the total field F 0 ¼ F þ Fs obeys the field equation, as stated in Eq. (4), with the
original and secondary sources included, and the original field obeys it with the original sources
included as stated in Eq. (1), the scattered field alone satisfies the field equation as well, with only
the secondary sources included,

LFs ¼ S00: ð37Þ

So the scattered field can be obtained from

Fs ¼ L�1S00 ¼ L�1½Lðeðx1 � x10ÞÞFs	; ð38Þ

where L�1 is the inverse of operator L: The expression above is in fact the Huygens’ principle for
the scattered field, i.e., the scattered field calculated by the help of the scattered field at surface A:
It is well known that the Huygens’ principle as presented above gives zero field inside A and, if the
surface is smooth (assumed in the following), half of the field at surface A (see, e.g., [25], p. 182).
So if it is applied at surface A itself, the right side of the expression has to be doubled to yield

Fs ¼ 2L�1S00 ¼ 2L�1½Lðeðx1 � x10ÞÞFs	 at A: ð39Þ

The sum of scattered field Fs with original field F at surface A can now be defined to obey a
homogeneous boundary condition attached to the hypothetical scatterer

jðF þ FsÞ ¼ 0 at A; ð40Þ

where j is a boundary condition operator. Sometimes it is convenient to express the boundary
condition so that the original and scattered fields are separated

j0 F

Fs

 !
¼ 0 at A; ð41Þ

where j0 is the corresponding boundary condition operator for that case.
Scattered field Fs at A can thus be obtained from original field F using Eq. (39) and boundary

condition j; Eq. (40), or j0; Eq. (41). Once the scattered field at A has been calculated, the
secondary sources on A can be obtained from expression (36), and after this the scattered field

ARTICLE IN PRESS

S. Uosukainen / Journal of Sound and Vibration 267 (2003) 979–1005988



everywhere outside A can be computed from expression (38) if needed. Depending on the
boundary condition, the system does not work on the local control principle, generally.

4.2. Application to acoustic fields

The examination above is here specified to acoustic fields. Based on that, simple reflecting
source, and pressure- and velocity-reflecting boundaries are defined. In the Huygens’ principle, the
scalar Green’s function is utilized with scalar fields, and the dyadic Green’s function for
irrotational fields is utilized with vector fields. With the pressure- and velocity-reflecting
boundaries, the derivations of the formulae of the secondary source strengths utilize the matrix
formulation of the Huygens’ principle.

4.2.1. Basic equations
With acoustic fields the scattered fields can be presented with vector Fs, as with the original ones

in Eq. (18),

Fs ¼
ps

us

" #
; ð42Þ

where ps and us are the scattered sound pressure and particle velocity. Inserting this and
expression (19) into equation (36) yields

S00 ¼
q00

f 00

" #
¼ dðx1 � x10Þ

0 en�

en 0

" #
ps

us

" #

¼ dðx1 � x10Þ
us � en

psen

" #
¼ dðx1 � x10Þ

us

psI

" #
� en: ð43Þ

The corresponding surface source density vector on A is

S00
s ¼

q00s

f 00s

" #
¼

us � en

psen

" #
¼

us

psI

" #
� en at A: ð44Þ

In acoustic fields operator L�1 is a volume integration over source distributions; in time
harmonic fields it is, according to Appendix A,

L�1 ¼
Z

V

dVðr0Þ
jor0gðrjr0Þ =0gðrjr0Þ�

=0 �Gðrjr0Þ joQ0GTðrjr0Þ�

" #
; ð45Þ

where the integration is performed with respect to co-ordinate r0; =0 operates to co-ordinate r0; g
is the scalar Green’s function, G is the corresponding dyadic Green’s function for irrotational
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fields, GT is its transpose, j is the imaginary unit, and o is angular frequency (¼ 2pf ; f is
frequency). So the scattered field vector Fs at A is, according to Eqs. (39), (43) and (45),

FsðrÞ ¼
psðrÞ

usðrÞ

" #

¼ 2
Z

V

dV ðr0Þ
jor0gðrjr0Þ =0gðrjr0Þ�

=0 �Gðrjr0Þ joQ0GTðrjr0Þ�

" #
dðx1 � x10Þ

usðr0Þ � en0

psðr0Þen0

" #

¼ 2
I
A

dAðr0Þ
jor0gðrjr0Þ en0 � =0gðrjr0Þ

=0 �Gðrjr0Þ joQ0en0 �Gðrjr0Þ

" #
usðr0Þ � en0

psðr0Þ

" #
at A; ð46Þ

where en0 is the unit normal vector at the integration point on surface A: The scattered field vector
where only the normal component of the particle velocity, instead of the total particle velocity, is
present, is denoted by Fsn: According to Eq. (46), this is at surface A (in the last vector in the
expression, the order of the field quantities has been changed)

FsnðrÞ ¼
psðrÞ

usðrÞ � en

" #

¼ 2
I
A

dAðr0Þ
en0 � =0gðrjr0Þ jor0gðrjr0Þ

joQ0en0en:Gðrjr0Þ en=0 �Gðrjr0Þ

" #
psðr0Þ

usðr0Þ � en0

" #
at A; ð47Þ

where en is the unit normal vector at the field point on surface A and the double dot product of
two dyadics ab and cd is defined as ab : cd ¼ ða . cÞðb . dÞ: The necessary parts of Green’s dyadic G
are obtained from scalar Green’s function g; according to Appendix A, as

en0en:G ¼ en0 � eng�
1

k2

� �
en0en:½=0 � ð=0g� IÞ	

en � =0G ¼ en � =0g: ð48Þ

In fact, the operator in Eq. (47) is such that if one field quantity at the surface is known, the other
can be calculated from either of the two equations included in the expressions.
Similar expressions at surface A can be presented for the original field if the reference directions

of the unit normal vector and the particle velocity are reversed. This leads to the expression of
original field vector Fn (subscript n meaning: with only the normal component of the particle
velocity present)

FnðrÞ ¼
pðrÞ

uðrÞ � en

" #

¼ � 2
I
A

dAðr0Þ
en0 � =0giðrjr0Þ jor0giðrjr0Þ

joQ0en0en:Giðrjr0Þ en � =0Giðrjr0Þ

" #
pðr0Þ

uðr0Þ � en0

" #
at A: ð49Þ

Generally, Green’s functions g and gi; and the corresponding Green’s dyadics, in expressions
(47) and (49), respectively are not the same unless the free space Green’s function is selected, e.g.,

ARTICLE IN PRESS

S. Uosukainen / Journal of Sound and Vibration 267 (2003) 979–1005990



if the Green’s function is selected so that it fulfills either the Dirichlet’s or Neumann’s boundary
condition at A and A is finite, Green’s function g in Eq. (47) represents a field in an infinite space
(outside A), and in Eq. (49) Green’s function gi represents a field in a resonator (inside A). Only in
the case of surface A being infinite, it divides the space in two semi-infinite volumes and there are
possibilities to have similar Green’s functions fulfilling the same boundary conditions at A in both
subspaces.
Boundary conditions (40) and (41) are now formally

j
p

u � en

" #
þ

ps

us � en

" # !
¼ 0 at A3j

p þ ps

ðuþ usÞ � en

" # !
¼ 0 at A

or

j0

p

u � en

" #

ps

us � en

" #
0
BBBBB@

1
CCCCCA ¼ 0 at A3j0

p

u � en

ps

us � en

2
6664

3
7775

0
BBB@

1
CCCA ¼ 0 at A: ð50Þ

Once the scattered field at A has been calculated from expressions (47) and (50), the secondary
sources on A can be obtained from expression (44), and after that, if needed, the scattered field
vector everywhere outside A can be computed from expression (38), which is now, according to
equations (45) and (43),

FsðrÞ ¼
psðrÞ

usðrÞ

" #
¼
Z

V

dVðr0Þ
jor0gðrjr0Þ =0gðrjr0Þ�

=0 �Gðrjr0Þ joQ0GTðrjr0Þ�

" #
q00ðr0Þ

f 00ðr0Þ

" #

¼
I
A

dAðr0Þ
jor0gðrjr0Þ =0gðrjr0Þ�

=0 �Gðrjr0Þ joQ0GTðrjr0Þ�

" #
q00s ðr0Þ

f 00sðr0Þ

" #
outside A: ð51Þ

4.2.2. Simple reflecting source
A reflecting source is defined here to be such that either the sound pressure or the normal

component of the particle velocity of the scattered field is directly proportional to the
corresponding original field quantity at surface A: For the pressure-reflecting source boundary
condition operator j0 in Eq. (50) (lower alternative) can be presented as a vector u0

u0 ¼ ½�R 0 1 0 	; ð52Þ

where R is the reflection coefficient. The boundary condition is now simply

ps ¼ Rp at A: ð53Þ

For the velocity-reflecting source the vector u0 representing the boundary condition operator is

u0 ¼ ½ 0 R 0 1 	; ð54Þ

and the boundary condition is thus

us � en ¼ �Ru � en at A: ð55Þ
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The minus sign has been selected above in order to have the expression for the sound pressure
consistent with that of the pressure-reflecting source in the case of an infinite reflective plane, as is
evident later.
In the following, simple reflecting sources are defined, ‘‘simple’’ meaning that the sources own

some additional properties. Firstly, the reflection coefficient is supposed to be constant on surface
A; so it can be extracted from the surface integration in Eq. (47). Secondly, it is supposed that the
Green’s functions fulfill the same boundary conditions on both sides of A: For a simple pressure-
reflecting source, obeying Eq. (53), this can be defined most conveniently as

giðrjr0Þ ¼ Lggðrjr0Þ or LgGiðrjr0Þ ¼ Gðrjr0Þ; ð56Þ

where operator Lg is such that it can be extracted from the surface integration in expressions (47)
and (49). In that case the scattered field is, according to Eq. (47),

psðrÞ ¼ 2
I
A

½en0 � =0gðrjr0Þpsðr0Þ þ jor0gðrjr0Þðusðr0Þ � en0Þ	dAðr0Þ at A

or

usðrÞ � en ¼ 2Lg

I
A

½joQ0en0en:Giðrjr0Þpsðr0Þ þ en � =0 �Giðrjr0Þðusðr0Þ � en0Þ	dAðr0Þ at A; ð57Þ

and the original field is correspondingly, according to Eq. (49),

pðrÞ ¼ �2Lg

I
A

en0 � =0gðrjr0Þpðr0Þ þ jor0gðrjr0Þðuðr0Þ � en0Þ
� �

dAðr0Þ at A

or

uðrÞ � en ¼ �2
I
A

½joQ0en0en:Giðrjr0Þpðr0Þ þ en � =0 �Giðrjr0Þðuðr0Þ � en0Þ	dAðr0Þ at A: ð58Þ

Now the Green’s functions and the Green’s dyadics in the integrations in Eqs. (57) and (58) are
the same, and they can be selected so that either of the following boundary conditions is fulfilled

en0 � =0gðrjr0Þ ¼ 0 at A or en � =0 �Giðrjr0Þ ¼ 0 at A: ð59Þ

In those cases the following alternate expressions for the scattered field, according to Eq. (57), are
obtained correspondingly

psðrÞ ¼ 2jor0

I
A

gðrjr0Þðusðr0Þ � en0ÞdAðr0Þ at A

or

usðrÞ � en ¼ 2joQ0Lg

I
A

en0en:Giðrjr0Þpsðr0ÞdAðr0Þ at A: ð60Þ
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The corresponding equations for the original fields are in that case, according to Eq. (58),

pðrÞ ¼ �2jor0Lg

I
A

gðrjr0Þðuðr0Þ � en0ÞdAðr0Þ atA

or

uðrÞ � en ¼ �2joQ0

I
A

en0en:Giðrjr0Þpðr0ÞdAðr0Þ at A: ð61Þ

Inserting Eq. (53) in Eqs. (60) and (61) yieldsI
A

gðrjr0Þðusðr0Þ � en0ÞdAðr0Þ ¼ �RLg

I
A

gðrjr0Þðuðr0Þ � en0ÞdAðr0Þ at A

or

usðrÞ � en ¼ �RLguðrÞ � en at A; ð62Þ

which alternatives in fact give the same result, best presented by the latter. So in this case the
expressions for the scattered fields are such that the surface integrations and Green’s functions are
no longer needed. The expression for the secondary source strength vector of the simple pressure-
reflecting source is now, according to Eqs. (44), (53) and (62),

S00
s ¼

q00
s

f 00s

" #
¼

us � en

psen

" #
¼ R

�Lgu � en

pen

" #
at A: ð63Þ

According to the result above, the secondary dipole source distribution works on the local
control principle in the case of a pressure-reflecting source. Generally, that is not the case with the
secondary monopole distribution.
Similarly, if the Green’s functions fulfill the same boundary conditions on both sides of A; the

simple velocity-reflecting source, obeying Eq. (55), has

Lgugiðrjr0Þ ¼ gðrjr0Þ or Giðrjr0Þ ¼ LguGðrjr0Þ; ð64Þ

where operator Lgu is such that it can be extracted from the surface integration in expressions (47)
and (49). In that case the scattered field is, according to Eq. (47),

psðrÞ ¼ 2Lgu

I
A

½en0 � =0giðrjr0Þpsðr0Þ þ jor0giðrjr0Þðusðr0Þ � en0Þ	dAðr0Þ at A

or

usðrÞ � en ¼ 2
I
A

½joQ0en0en:Gðrjr0Þpsðr0Þ þ en � =0 �Gðrjr0Þðusðr0Þ � en0Þ	dAðr0Þ at A; ð65Þ

and the original field is correspondingly, according to Eq. (49),

pðrÞ ¼ �2
I
A

½en0 � =0giðrjr0Þpðr0Þ þ jor0giðrjr0Þðuðr0Þ � en0Þ	dAðr0Þ at A
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or

uðrÞ � en ¼ �2Lgu

I
A

½joQ0en0en:Gðrjr0Þpðr0Þ þ en � =0 �Gðrjr0Þðuðr0Þ � en0Þ	dAðr0Þ at A: ð66Þ

Also in this situation, Green’s functions and the Green’s dyadics in the integrations in Eqs. (65)
and (66) are the same, and they can be selected so that either of the following boundary conditions
is fulfilled:

en0 � =0giðrjr0Þ ¼ 0 at A or en � =0 �Gðrjr0Þ ¼ 0 at A: ð67Þ

In those cases, correspondingly, the following alternate expressions for the scattered fields,
according to Eq. (65), are obtained

psðrÞ ¼ 2jor0Lgu

I
A

giðrjr0Þðusðr0Þ � en0ÞdAðr0Þ at A

or

usðrÞ � en ¼ 2joQ0

I
A

en0en:Gðrjr0Þpsðr0ÞdAðr0Þ at A: ð68Þ

The corresponding equations for the original fields are in that case, according to Eq. (66),

pðrÞ ¼ �2jor0

I
A

giðrjr0Þðuðr0Þ � en0ÞdAðr0Þ at A

or

uðrÞ � en ¼ �2joQ0Lgu

I
A

en0en:Gðrjr0Þpðr0ÞdAðr0Þ at A: ð69Þ

Inserting Eq. (55) in Eqs. (68) and (69) yields

psðrÞ ¼ RLgupðrÞ atA

or I
A

en0en:Gðrjr0Þpsðr0ÞdAðr0Þ ¼ RLgu

I
A

en0en:Gðrjr0Þpðr0ÞdAðr0Þ at A; ð70Þ

which alternatives in fact give the same result, best presented by the former alternative. So in this
case the expressions for the scattered fields are also such that the surface integrations and Green’s
functions are no longer needed. The expression for the secondary source strength vector of the
simple velocity-reflecting source is now, according to Eqs. (44), (55) and (70),

S00
s ¼

q00
s

f 00s

" #
¼

us � en

psen

" #
¼ R

�u � en

Lgupen

" #
at A: ð71Þ

According to the result above, the secondary monopole distribution works on the local control
principle in the case of a simple velocity-reflecting source. Generally, that is not the case with the
secondary dipole distribution.

ARTICLE IN PRESS

S. Uosukainen / Journal of Sound and Vibration 267 (2003) 979–1005994



If surface A is an infinite plane, Lg ¼ Lgu ¼ 1: In that case the simple pressure-reflecting source
and the simple velocity-reflecting source are identical and, according to Eqs. (62) and (70),

ps ¼ Rp atA and us � en ¼ �Ru � en at A: ð72Þ

The secondary source vector in this case is, according to Eq. (63) or Eq. (71),

S00
s ¼

q00
s

f 00s

" #
¼

us � en

psen

" #
¼ R

�u � en

pen

" #
at A: ð73Þ

This result is compatible with the one obtained directly with the reflection transformation, see
Eq. (26).
According to Eq. (73), the simple planar reflecting source is a special case of the boundary

condition element such that it works purely on the local control principle.

4.2.3. Matrix formulation of the equations

For numerical calculations in more complicated situations, surface A can be divided into
subareas so that the field variables can be regarded as constant on each subarea. Subarea pressure
vector Ps and subarea velocity vector Us of the scatterer on surface A are defined as

Ps ¼ ½ ps1 ps2 ps3 y 	T
Us ¼ ½ us1 � en us2 � en us3 � en y 	T: ð74Þ

Similar definitions can be made for the original field, to yield vectors P and U with components
p1; p2; p3;?; and u1 ¼ u1 � en; u2 ¼ u2 � en; u3 ¼ u3 � en?: Expression (47) now has the form

Ps

Us

" #
¼

A B

C D

" #
Ps

Us

" #
at A; ð75Þ

where components aij ; bij ; cij; and dij of matrices A; B; C; and D; respectively, are

aij ¼ 2DAjenj � =jgðrijrjÞ; bij ¼ 2DAjjor0gðrijrjÞ;

cij ¼ 2DAjjoQ0enjeni:GðrijrjÞ; dij ¼ 2DAjeni � =jGðrijrjÞ; ð76Þ

where DAj is the area of the subarea j; the subscript j in = denotes that the spatial derivative is
attached to co-ordinate rj; the last subscript in en denotes the point where the unit normal vector is
defined, and, according to Eq. (48),

enjeni:GðrijrjÞ ¼ enj � enigðrijrjÞ �
1

k2
enjeni:½=j � ð=jgðrijrjÞ � IÞ	

eni � =j �GðrijrjÞ ¼ eni � =jgðrijrjÞ: ð77Þ

The matrix terms with i ¼ j should be integrated to avoid singularity in the expressions above.
The equation for the field quantities at A; Eq. (75), can be expressed also as

ðI� AÞPs

ðI�DÞUs

" #
�

BUs

CPs

" #
¼
0

0

" #
at A; ð78Þ
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where I is a unit matrix.
Matrices A; B; C; and D are not totally independent. Three of them yield always the remaining

one. Eq. (78) yields, e.g., matrix C by the help of matrices A; B; and D as

C ¼ ðI�DÞB�1ðI� AÞ: ð79Þ

Boundary condition (50) is now

j
Pþ Ps

UþUs

" # !
¼ 0 at A or

j0

P

U

Ps

Us

2
6664

3
7775

0
BBB@

1
CCCA ¼ 0 at A:

ð80Þ

With the matrix formulation, monopole strength vector Q00
s with components q00

s1; q
00
s2; q

00
s3;y;

and dipole strength vector F00
s with components f

00
s1; f

00
s2; f

00
s3;y in Eq. (44) are

Q00
s ¼ Us; F00

s ¼ Pns; ð81Þ

where the ith element in the pressure vector Pns vector is psieni: Once the scattered field vectors
have been calculated from boundary condition (80) by the help of the original field vectors and
Eq. (78), the secondary sources needed are obtained from the scattered fields at A according to
Eq. (81).

4.2.4. Pressure-reflecting boundary

With the pressure-reflecting boundary, the boundary condition is as in Eq. (53). In the general
case the reflection coefficient R has to be substituted by a diagonal reflection coefficient
matrix R: If the reflection coefficient is not a function of spatial co-ordinates on A; the matrix is a
multiple of the unit matrix of the form R ¼ RI: The boundary condition and presentation (78)
yield now

ðI� AÞRP

ðI�DÞUs

" #
¼

BUs

CRP

" #
at A; ð82Þ

from which the normal component of the scattered particle velocity at A can be calculated. The
upper and lower equations give two possible presentations for the normal component of the
scattered particle velocity at A:

Us ¼ B�1ðI� AÞRP at A or Us ¼ ðI�DÞ�1CRP at A: ð83Þ

The secondary source strength vector is now, according to Eqs. (44), (53) and (83),

Q00
s

F00
s

" #
¼

B�1ðI� AÞRP

RPn

" #
¼

ðI�DÞ�1CRP

RPn

" #
; ð84Þ

where the ith element in the pressure vector Pn is pieni:
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In the case of a pressure-release boundary, the sum of the sound pressures vanishes on the
boundary. The reflection coefficient matrix is now R ¼ �I and

Us ¼ �B�1 I� A½ 	P at A or Us ¼ �½I�D	�1CP at A: ð85Þ

The secondary source strength vector is now

Q00
s

F00
s

" #
¼ �

B�1 I� A½ 	P

Pn

" #
¼ �

½I�D	�1CP

Pn

" #
: ð86Þ

In the matrix presentation for the pressure-reflecting boundary, only the sound pressure is
needed from the original fields. The secondary dipole sources work on the local control principle
with the pressure-reflecting boundary, as stated before with the operator presentation.

4.2.5. Velocity-reflecting boundary

With the velocity-reflecting boundary, the boundary condition is as in Eq. (55). In the general
case the reflection coefficient R has to be substituted by a diagonal reflection coefficient matrix R:
The boundary condition and presentation (78) yield now

ðI� AÞPs

ðI�DÞRU

" #
¼ �

BRU

CPs

" #
at A; ð87Þ

from which the scattered sound pressure can be calculated. The upper and lower equations give
two possible presentations for the scattered sound pressure at A

Ps ¼ �ðI� AÞ�1BRU at A or Ps ¼ �C�1ðI�DÞRU at A: ð88Þ

The secondary source strength vector is now, according to Eqs. (44), (55) and (88),

Q00
s

F00
s

" #
¼ �

RU

ðI� AÞ�1BRUn

" #
¼ �

RU

C�1ðI�DÞRUn

" #
; ð89Þ

where the ith element in the velocity vector Un is uieni:
In the case of a rigid boundary, the sum of the normal components of the particle velocity

vanishes on the boundary. In that case R ¼ I and

Ps ¼ �ðI� AÞ�1BU at A or Ps ¼ �C�1ðI�DÞU at A: ð90Þ

The secondary source strength vector of the rigid boundary is

Q00
s

F00
s

" #
¼ �

U

ðI� AÞ�1BUn

" #
¼ �

U

C�1ðI�DÞUn

" #
: ð91Þ

In the matrix presentation for the velocity-reflecting boundary, only the normal component of
the particle velocity is needed from the original fields. The secondary monopole sources work on
the local control principle with the velocity-reflecting boundary, as stated before with the operator
presentation.

ARTICLE IN PRESS

S. Uosukainen / Journal of Sound and Vibration 267 (2003) 979–1005 997



4.3. Impedance boundary condition

In a general case the boundary conditions cannot be presented as easily as above, e.g., in the
case of an impedance boundary. In that case a proper duality transformation [23] makes the
problem much similar to those presented. In the next the impedance boundary is introduced,
based on a proper duality transformation.

4.3.1. Duality transformed fields

It is supposed that the field at A is composed of original and scattered components Fn and Fsn

(subscript n with only normal components of vector quantities) having both two components

Fn ¼
f1

f2

" #
; Fsn ¼

fs1

fs2

" #
; ð92Þ

and that there exists duality transformation TD such that with the transformed fields at surface A

Fd ¼
f1d

f2d

" #
¼ TDFn ¼ TD

f1

f2

" #
; Fsd ¼

fs1d

fs2d

" #
¼ TDFsn ¼ TD

fs1

fs2

" #
ð93Þ

the boundary condition operator can be represented by a vector ud as

ud ¼ ½ 0 1 	: ð94Þ

Boundary condition (50) (upper version) for the transformed fields is in this case

udðFd þ FsdÞ ¼ 0 at A3½ 0 1 	
f1d þ fs1d

f2d þ fs2d

" #
¼ 0 at A; ð95Þ

which is simply

f2d þ fs2d ¼ 0 at A3fs2d ¼ �f2d at A: ð96Þ

The other transformed scattered field component is thus readily known on the surface.
Substituting the transformed field variables with Fsn ¼ T21

D Fsd ; according to Eq. (93), in Eq. (39)
(or Eq. (47)), or its discretized version Eq. (75), and utilizing Eq. (96) yield

T�1
D Fsd ¼ T�1

D

fs1d

�f2d

" #
¼ 2L�1½Lðeðx1 � x10ÞÞT�1

D Fsd 	 ¼ 2L�1 Lðeðx1 � x10ÞÞT�1
D

fs1d

�f2d

" #" #
at A or

T�1
D Fsd ¼ T�1

D

Fs1d

�F2d

" #
¼

A B

C D

" #
T�1

D Fsd ¼
A B

C D

" #
T�1

D

Fs1d

�F2d

" #
at A; ð97Þ

where F1d ; F2d ; Fs1d and Fs2d are subarea vector presentations of f1d ; f2d ; fs1d ; and fs2d

correspondingly. Multiplying the equation above by TD yields

fs1d

�f2d

" #
¼ 2TDL

�1 Lðeðx1 � x10ÞÞT�1
D

fs1d

�f2d

" #" #
at A or

Fs1d

�F2d

" #
¼ TD

A B

C D

" #
T�1

D

Fs1d

�F2d

" #
at A: ð98Þ
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Now the other transformed scattered field component at the surface can also be cal-
culated from either of the expressions above. After the transformed scattered field at the surface
has been calculated, the actual scattered field at the surface is obtained from, according to
Eq. (93),

Fsn ¼
fs1

fs2

" #
¼ T�1

D Fsd ¼ T�1
D

fs1d

fs2d

" #
at A; ð99Þ

after which the secondary sources are known, according to Eq. (36),

S00 ¼ Lðeðx1 � x10ÞÞFs: ð100Þ

Operator Lðeðx1 � x10ÞÞ picks up only component Fsn from Fs at A in the equation above.

4.3.2. Impedance boundary

In the case of an impedance boundary, the boundary condition is

Pþ Ps ¼ ZðUþUsÞ at A; ð101Þ

where the diagonal impedance matrix Z is the desired ratio of the total sound pressure and normal
component of the particle velocity at the surface as a function of spatial co-ordinates. If the
impedance is not dependent on spatial co-ordinates on A; it is a multiple of the unit matrix of the
form Z ¼ ZI: The fields can be transformed in order to change the boundary condition into the
form of Eq. (95) or (96). The proper field transformation at the surface is [23]

Fsd ¼
Fs1d

Fs2d

" #
¼

I Z

I �Z

" #
Fsn ¼

I Z

I �Z

" #
Ps

Us

" #
;

Fd ¼
F1d

F2d

" #
¼

I Z

I �Z

" #
Fn ¼

I Z

I �Z

" #
P

U

" #
: ð102Þ

So, the duality transformation operator and its inverse are

TD ¼
I Z

I �Z

" #
; T�1

D ¼ 1
2

I I

Y �Y

" #
; ð103Þ

where

Y ¼ Z�1 ð104Þ

The transformed fields could be obtained from expressions (98). However, using expressions
(97) instead yields simpler results. Now

T�1
D Fsd ¼ 1

2

I I

Y �Y

" #
Fs1d

�F2d

" #
¼ 1
2

Fs1d � F2d

YðFs1d þ F2dÞ

" #
;

A B

C D

" #
T�1

D ¼ 1
2

A B

C D

" #
I I

Y �Y

" #
¼ 1
2

Aþ BY A� BY

CþDY C�DY

" #
: ð105Þ
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Now expressions (97) yield

1
2

Fs1d � F2d

YðFs1d þ F2d Þ

" #
¼ 1
2

Aþ BY A� BY

CþDY C�DY

" #
Fs1d

�F2d

" #
at A; ð106Þ

which can be rearranged to

Fs1d � F2d

Fs1d þ F2d

" #
¼

Aþ BY A� BY

ZCþ ZDY ZC� ZDY

" #
Fs1d

�F2d

" #
at A: ð107Þ

This leads to two alternative solutions

Fs1d ¼ ½I� A� BY	�1½I� Aþ BY	F2d or

Fs1d ¼ �½I� ZC� ZDY	�1½Iþ ZC� ZDY	F2d at A: ð108Þ

Now, according to Eqs. (42), (93), (102), (105) and (108), the two alternative solutions below
yield the scattered field vector at the surface

Fsn ¼
Ps

Us

" #
¼ 1
2

Fs1d � F2d

YðFs1d þ F2d Þ

" #

¼ 1
2

½I� A� BY	�1 I� Aþ BY½ 	 � I

Yð I� A� BY½ 	�1½I� Aþ BY	 þ IÞ

" #
ðP� ZUÞ at A; or

¼ � 1
2

½I� ZC� ZDY	�1½Iþ ZC� ZDY	 þ I

Yð½I� ZC� ZDY	�1½Iþ ZC� ZDY	 � IÞ

" #
ðP� ZUÞ at A: ð109Þ

The secondary source strength vector is now, according to Eq. (81),

Q00
s

F00
s

" #
¼

Us

Pns

" #

¼ 1
2

Yð½I� A� BY	�1½I� Aþ BY	 þ IÞ

ð½I� A� BY	�1½I� Aþ BY	 � IÞen

" #
ðP� ZUÞ at A; or

¼ � 1
2

Yð½I� ZC� ZDY	�1½Iþ ZC� ZDY	 � IÞ

ð½I� ZC� ZDY	�1½Iþ ZC� ZDY	 þ IÞen

" #
ðP� ZUÞ at A: ð110Þ

Either of the two alternative expressions above yield the secondary sources needed to obtain the
active impedance boundary with the desired impedance at surface A: In a general case, the
solution does not work on the local control principle, but the secondary source strengths on each
subarea need information of the primary fields at each subarea.
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4.4. True boundary condition elements

The active scatterer may be categorized as a true boundary condition element if its net sound
power radiation is less than or equal to zeroI

A

Refðp þ psÞðuþ usÞ
n � engdAp0; ð111Þ

where ‘‘*’’ denotes complex conjugate and Ref�g denotes real part. The zero power means that the
scatterer behaves like a reactive element, and negative power means that the scatterer has
absorptive properties.
As an example, the simple reflecting source on an infinite plane has, according to Eq. (72),I

A

Refðp þ psÞðuþ usÞ
n � engdA

¼
I
A

Refpð1þ RÞunð1� RnÞ � engdA ¼
I
A

Refpun � enð1þ R � Rn � jRj2ÞgdA

¼
I
A

½Refpun � engð1� jRj2Þ � 2Imfpun � engImfRg	dAp0; ð112Þ

where Imf�g denotes imaginary part. Because the original field propagates towards the surface,
planar scatterers have

Refpun � engp0: ð113Þ

Thus, if the original field has no reactive intensity at A (as with an incident plane wave), the
condition of the simple reflecting source on an infinite plane to be a true boundary condition
element is simply

jRjp1: ð114Þ

As further examples, the pressure-release surface (R ¼ �1) and the rigid surface (R ¼ þ1)
elements are always true boundary condition elements. With the first, the total sound pressure
vanishes, and with the second, the normal component of the total particle velocity vanishes at A:
This leads to the situation that the normal component of the intensity vanishes at A and according
to Eq. (112) there is no power flow normal to the surface.
As the last example, the impedance surface is considered. With the impedance surfaceI

A

Refðp þ psÞðuþ usÞ
n � engdA ¼

I
A

RefZðuþ usÞ � enðuþ usÞ
n � engdA

¼
I
A

RefZgjðuþ usÞ � enj2dAp0: ð115Þ
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Now, if the impedance is constant on A; the condition of the impedance boundary to be a true
boundary condition element is simply

RefZgp0: ð116Þ

This ensures that the net power flow is not directed outwards from the impedance boundary.

5. Conclusions

The principle of formulating the JMC method to produce secondary sources that function as
active scatterers on a hypothetical scattering surface has been established. As examples, an
actively reflecting plane and active boundary condition elements were introduced.
The JMC formulation for the active scatterer was presented in a general operator formulation

and applied to acoustic fields. The actively reflecting plane served as an example, and the solution
was extended to a general planar JMC element with well-defined reflection and transmission
properties. The solution works on the local control principle: each reflecting subarea needs
information of the primary field only at that subarea. The solution can also apply to piecemeal
planar surfaces and to smooth convex surfaces, approximately.
General active boundary condition elements were defined in a general operator formulation and

applied to acoustic fields. Based on the element definitions, simple reflecting source, pressure- and
velocity-reflecting boundaries, and impedance boundary were introduced. The utilization of the
Huygens’ principle in the derivations connects the field variables at the hypothetical surface of the
scatterer so that the scattered field obeys the field equation automatically. Boundary condition
elements do not work on the local control principle: in a general case secondary sources on each
subarea need information of the primary field at each subarea. Secondary dipole sources work on
the local control principle in the case of a pressure-reflecting boundary, and secondary monopole
sources in the case of a velocity-reflecting boundary correspondingly. True boundary condition
elements were also defined based on their net sound power radiation.
The active scatterers need, as a reference signal, the original field values at the hypothetical

scattering surface. This may be one of the main limitations of practical systems. However, there
are solutions to avoid the limitation, e.g., unidirectional reference detectors can be used, or the
reference signals can be synthesized from the original source signals detected near the sources,
utilizing the transfer functions from the sources to the hypothetical scattering surface. One
possibility is to implement an electronic model of the feedback path (with the sign reversed) within
the controller in order to subtract the outputs of the actuators from the detector signals, as is done
in the Internal Model Control [26] in feedback systems.
There is a need for further work in practical problems concerning implementation of the active

scatterers, and in testing and measuring their applicability in real systems. Some fields of
application could be the active control of the acoustical properties of concert halls, cinemas, open-
air concert places, and generally all interior spaces where changeable acoustical properties are
needed.
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Appendix A. Inverse of operator L

Consider a flowless, homogenous ideal fluid. With time-harmonic fields, Eqs. (1) and (18) yield
the wave equations for the field variables in the forms

=2p þ k2p ¼ �jor0q þ = � f; == � uþ k2u ¼ �joQ0f þ =q; ðA:1Þ

where o is the angular frequency, j is the imaginary unit, and k is the wave number (o=c0; c0 is the
speed of sound of the fluid at rest).
Scalar Green’s function g is a function obeying (see, e.g., [27])

=2gðrjr0Þ þ k2gðrjr0Þ ¼ �dðr� r0Þ; ðA:2Þ

where d is the Dirac delta function, r is the field point, and r0 is the source point. The scalar
Green’s function can be regarded as the field of a point source.
Dyadic Green’s function G for irrotational fields is a function obeying [23]

== �Gðrjr0Þ þ k2Gðrjr0Þ ¼ �Idðr� r0Þ; ðA:3Þ

where I is the identic dyadic. If the scalar Green’s function is known, the corresponding dyadic
Green’s function for irrotational fields can be obtained from the scalar one by using the relation
[28]

Gðrjr0Þ ¼ Iþ
1

k2
==�

�I

� �
gðrjr0Þ; ðA:4Þ

where

==�
�Igðrjr0Þ ¼ �=� =� ðIgðrjr0ÞÞ: ðA:5Þ

The double cross product of two dyadics ab and cd is generally defined as ab��cd ¼ ða� cÞðb� dÞ:
Comparing Eq. (A.1) with Eqs. (A.2) and (A.3) yields expressions for the sound pressure and

the particle velocity as convolution integrals with the scalar Green’s function and the
corresponding dyadic Green’s function, and the monopole and dipole distributions as

p ¼
Z

V

½jor0qðr0Þ � =0 � fðr0Þ	gðrjr0ÞdV ðr0Þ

¼
Z

V

½jor0qðr0Þgðrjr0Þ þ fðr0Þ � =0gðrjr0Þ	dV ðr0Þ

u ¼
Z

V

½joQ0fðr0Þ � =0qðr0Þ	 �Gðrjr0ÞdVðr0Þ

¼
Z

V

½joQ0fðr0Þ �Gðrjr0Þ þ qðr0Þ=0 �Gðrjr0Þ	dV ðr0Þ; ðA:6Þ

where the integration is performed with respect to co-ordinate r0; =0 operates to co-ordinate r0;
and where V is the volume under examination. The boundary surface of V such that the source
distributions are truly inside it is denoted by S: This property of surface S has been utilized in
obtaining the latter versions of the right sides of Eq. (A.6) by the help of partial integration and
the Gauss’ theorem.
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If the field equations are now presented in the operator formulae as in Eq. (1), the inverse of
operator L can be identified from the equations above as

L�1 ¼
Z

V

dVðr0Þ
jor0gðrjr0Þ =0gðrjr0Þ�

=0 �Gðrjr0Þ joQ0GTðrjr0Þ�

" #
; ðA:7Þ

where GT is the transpose of G:
Using Eq. (A.4), a couple of useful expressions can be obtained

=0 �G ¼ =0 � Iþ
1

k2
=0=0

�
�I

� �
g ¼ =0g � I ¼ =0g

a �G ¼ a � Iþ
1

k2
=0=0

�
�I

� �
g ¼ ag�

1

k2
a � f=0 � ½=0 � ðgIÞ	g

¼ ag�
1

k2
a � ½=0 � ð=0g� IÞ	; ðA:8Þ

where a is an arbitrary vector.
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